

A XIII-a Conferință Națională multidisciplinară – cu participare internațională, "Profesorul Dorin PAVEL – fondatorul hidroenergeticii românești", SEBEŞ, 2013

TESTAREA COMPORTAMENTULUI LA EROZIUNE CAVITAȚIONALĂ A UNUI ALIAJ NEFEROS CU 88 % ALUMINIU

Daniel CHIRUŞ, Marian-Dumitru NEDELONI

CAVITATION EROSION BEHAVIOR TESTING OF A NON FERROUS ALLOY WITH 88 % ALUMINIUM

This paper presents cavitation erosion behaviour testing of the nonferrous alloys AlSi12 with 88 % Aluminium. Vibratory cavitation tests were made on a cavitation stand in the laboratory, using the stationary specimen method. This alloy is not subject to cavitation erosion in practical applications, as is the stainless steels used in hydraulic turbines, but the experimental research highlight the behaviour of a material (AlSi12, in this case) when the period of time testing are different. Research results are presented through graphs and representative images.

Cuvinte cheie: eroziune cavitațională, compoziție chimică, macrostructură Keywords: cavitation erosion, chemical composition, macrostructure

1. Introducere

Testarea comportamentului la eroziune cavitaţională a aliajului AlSi12 cu 88 % Al, a fost făcută în laboratorul de tehnologia şi studiul materialelor, unde este în funcţiune standul de cavitaţie care aparţine centrului CCHAPT [7] din Universitatea "Eftimie Murgu" din Reşiţa.

Standul de cavitație se compune din generatorul de ultrasunete DG-2000 [6] și un aparat vibrator care la rândul lui se compune dintr-un traductor piezoelectric-acustic, un transformator mecanic, sonotroda și epruveta sau proba de lucru.

2. Procedura de experimentare

Conform standardelor G32-92 [4] și G32-10 [5], distanța dintre sonotrodă și epruvetă este de 0,6 mm, frecvența de rezonanță pentru aparatul vibrator este de 20 kHz, amplitudinea este de 50 µm.

Sonotroda din titan utilizată, vibrează deasupra epruvetei din materialul AlSi12, epruvetă prinsă într-un suport special în interiorul vasului de lichid sau apă, a cărei temperatură este măsurată cu ajutorul unui termometru digital și menținută la valoarea de 25±2 [grd] conform referinței bibliografice [4], printr-o serpentină conectată la rețea de apă.

Epruveta din AlSi12, sub formă de cub cu latura de 16 mm, va fi supusă la perioade etalon ale atacului cavitațional de 15 respectiv 8 minute, ceea ce înseamnă un timp total de 210 minute, respectiv 208 minute. În urma acestor timpi cumulați, se pot întocmi curbele pierderii masice și ale vitezei de eroziune cavitațională funcție de timp.

Înainte și după procesul de eroziune cavitațională, suprafețele epruvetei din AlSi12 se vor evidenția prin imagini caracteristice.

Compoziția chimică a aliajului AlSi12 cu 88 % Al [1], [3] este prezentată în tabelul 1, iar în figurile 1 și 2 se prezintă curbele caracteristice procesului de eroziune cavitațională conform standardului G32-10 [5], curbe obținute și în prezenta lucrare.

						Ia	belul 1
Cu	Fe	Mn	Mg	Si	Zn	Ti	Al
0,01	0,47	0,44	< 0,005	11,03	0,03	0,01	88

Fig. 1 Curba de pierdere de material funcție de timp

Fig. 2 Curba vitezei de eroziune cavitațională funcție de timp

3. Rezultatele experimentale obţinute

Rezultate obținute pentru perioadele etalon de 15 minute se prezintă numeric în tabelul 2, unde se observă o perioadă de 5 și 10 minute a atacului cavitațioanal, respectiv 13 perioade a câte 15 minute.

Tabelul 2

Timp	Dori	Macă	Masă e	erodată	Viteza de		
cumu- lat	oadă	epruvetă	per perioadă	cumulat	eroz cavitat	iune țională	
t	Δt	m	Δm	m _c	V _{ec}		
min	min	mg	mg	mg	mg/min	mg/h	
0	0	10327.87	0	0	0.0000	0.000	
5	5	10327.04	0.83	0.83	0.4447	26.680	
15	10	10317.02	10.02	10.85	1.4092	84.552	
30	15	10286.72	30.3	41.15	1.7767	106.600	
45	15	10263.72	23	64.15	1.2920	77.520	
60	15	10247.96	15.76	79.91	0.9283	55.700	
75	15	10235.87	12.09	92	0.7687	46.120	
90	15	10224.9	10.97	102.97	0.6670	40.020	
105	15	10215.86	9.04	112.01	0.6053	36.320	
120	15	10206.74	9.12	121.13	0.6497	38.980	
135	15	10196.37	10.37	131.5	0.7757	46.540	
150	15	10183.47	12.9	144.4	0.7473	44.840	
165	15	10173.95	9.52	153.92	0.7020	42.120	
180	15	10162.41	11.54	165.46	0.5720	34.320	
195	15	10156.79	5.62	171.08	0.3033	18.200	
210	15	10153.31	3.48	174.56	0.1607	9.640	

Pentru perioadele etalon de 8 minute, rezultate se prezintă numeric în tabelul 3, unde se observă câte o perioadă de 3 și 5 minute, respectiv 25 perioade a câte 8 minute fiecare.

Tabelul 3

Timp	Peri- oadă	Masă epruvetă	Masă e	erodată	Viteza de eroziune cavitațională			
cumu- lat			per perioadă	cumulat				
t	Δt	m	Δm	m _c	V _{ec}			
min	min	mg	mg	mg	mg/min	mg/h		
0	0	10153.5	0	0	0.0000	0.000		
3	3	10152.9	0.6	0.6	0.2968	17.805		
8	5	10150.61	2.29	2.89	0.6496	38.978		
16	8	10142.96	7.65	10.54	1.1731	70.388		
24	8	10131.84	11.12	21.66	1.4381	86.287		

32	8	10119.95	11.89	33.55	1.5606	93.637
40	8	10106.87	13.08	46.63	1.4750	88.500
48	8	10096.35	10.52	57.15	1.4631	87.788
56	8	10083.46	12.89	70.04	1.7763	106.575
64	8	10067.93	15.53	85.57	1.7712	106.275
72	8	10055.12	12.81	98.38	1.5981	95.887
80	8	10042.36	12.76	111.14	1.5981	95.888
88	8	10029.55	12.81	123.95	1.4563	87.375
96	8	10019.06	10.49	134.44	1.4962	89.775
104	8	10005.61	13.45	147.89	1.5912	95.475
112	8	9993.6	12.01	159.9	1.4881	89.288
120	8	9981.8	11.8	171.7	1.3469	80.813
128	8	9972.05	9.75	181.45	1.2312	73.875
136	8	9962.1	9.95	191.4	1.1219	67.312
144	8	9954.1	8	199.4	0.8744	52.462
152	8	9948.11	5.99	205.39	1.0131	60.788
160	8	9937.89	10.22	215.61	1.1800	70.800
168	8	9929.23	8.66	224.27	1.0387	62.325
176	8	9921.27	7.96	232.23	1.0056	60.338
184	8	9913.14	8.13	240.36	1.1069	66.413
192	8	9903.56	9.58	249.94	1.2656	75.938
200	8	9892.89	10.67	260.61	1.0725	64.350
208	8	9886.4	6.49	267.1	0.5500	33.000

Graficele care se obțin din tabelele 2 și 3 sunt prezentate în figurile 3÷10, pentru cele 2 variante ale perioadelor de încercare (15 și 8 minute).

Fig. 3 Curba pierderii de material funcție de timp (15 minute)

Fig. 4 Curba vitezei de eroziune cavitațională funcție de timp pentru (15 minute)

Fig. 6 Curba vitezei de eroziune cavitațională funcție de timp (8 minute)

Fig. 8 Curbele vitezei de eroziune cavitațională funcție de timp pentru AlSi12 (comparație)

Perioadele de 15 minute sunt folosite în general pentru metoda directă de cavitație, însă pentru slaba rezistență la eroziune cavitațională a aliajului AlSi12, s-a dorit și testarea la perioade de 8 minute.

Curbele din figurile 3, 4, 5 și 6 au fost interpolate polinomial, înregistrându-se următoarele abateri medii pătratice: relațiile 1 ($R^2 = 0.9948$) și 3 ($R^2 = 0.9998$) pentru pierderea masică, respectiv relațiile 2 (cu $R^2 = 0.9727$) și 4 (cu $R^2 = 0.8939$) pentru viteza de eroziune cavitațională.

$$M = 9 \cdot 10^{-6} t^3 - 0,0051t^2 + 1,53t$$
 (1)

$$v_{ec} = -6 \cdot 10^{-11} t^6 + 6 \cdot 10^{-8} t^5 - 2 \cdot 10^{-5} t^4 + 0,0034 t^3 - 0,2758 t^2 + 8,965t (2)$$

$$\mathsf{M} = 4 \cdot 10^{-12} t^6 - 3 \cdot 10^{-9} t^5 + 1 \cdot 10^{-6} t^4 - 0,0003 t^3 + 0,0288 t^2 + 0,3388 t \ \ (3)$$

$$v_{ec} = -2 \cdot 10^{-10} t^5 - 7 \cdot 10^{-7} t^4 + 0,0004 t^3 - 0,0713 t^2 + 4,7452 t \tag{4}$$

În figurile 9 și 10 se prezintă imaginile suprafețelor analizate înainte și după cavitație [2].

Fig. 9 Imagini ale epruvetei înainte de cavitație a), după cavitație b) și macrostructura suprafeței erodate c), pentru perioade de 15 minute

Fig. 10 Imagini ale epruvetei înainte de cavitație a), după cavitație b) și macrostructura suprafeței erodate c), pentru perioade de 8 minute

4. Concluzii

- Există diferenţe atunci când perioadele de timp sau duratele de atac cavitaţional diferă.
- Suprafaţa 2 a epruvetei din AlSi12, după un timp cumulat total de 210 minute a pierdut din masa iniţială 174,56 mg (pentru perioadele caracteristice de 15 minute).
- Suprafaţa 4 a aceleiaşi epruvete din AlSi12, după un timp cumulat total de 208 minute a pierdut din masă iniţială 267,1 mg (pentru perioadele caracteristice de 8 minute).

Mulţumiri

Autorii mulţumesc pentru sprijinul acordat de Fondul Social European Programul Operaţional Sectorial Dezvoltarea Resurselor Umane, prin Ministerul Muncii, Familiei și Protecției Sociale prin co-finanţarea proiectului (DocInvest) POSDRU/107/1.5/S/76813.

BIBLIOGRAFIE

[1] Lupinca, C.I., *Bazele elaborării aliajelor neferoase*, Curs universitar, Editura Eftimie Murgu, Reşiţa, 2004.

[2] Nedeloni, M.D., *Cercetări privind eroziunea cavitațională pe materiale utilizate la fabricația componentelor de turbine hidraulice*, Teză de doctorat, Universitatea "Eftimie Murgu" din Reşița, Decembrie, 2012.

[3] Rădulea, R., *The Influence of Metallic and Non-Metallic Inclusions on the Characteristics of Non-Ferrous Alloys Al-Si*, Analele universității "EFTIMIE MURGU", ANUL XIV, NR. 1/2007, ISSN 1453 - 7397, pag. 157-164.

[4] * * * ASTM Standard G32-92 (1992), *Standard Method of Vibratory Cavitation Erosion Test*. Annual Book of ASTM Standards, Philadelphia, 1992.

[5] * * * ASTM G32 – 10, *Standard Test Method for Cavitation Erosion Using Vibratory Apparatus*, Copyright © ASTM International, United States, 2010.

[6] * * * TELSONIC, Operating Instructions Cavitations Test Equipment DG 2000, 2007.

[7] * * * http://www.cchapt.ro/

Drd. Ing. Daniel CHIRUŞ Facultatea de Mecanică și Ingineria Materialelor, Universitatea "Eftimie Murgu" din Reşiţa e-mail: <u>d.chirus@uem.ro</u>

Asist. Univ. Dr. Ing. Marian-Dumitru NEDELONI Facultatea de Inginerie și Management, Universitatea "Eftimie Murgu" din Reșiţa, membru AGIR e-mail: <u>m.nedeloni@uem.ro</u>