

A XIII-a Conferință Națională multidisciplinară – cu participare internațională, "Profesorul Dorin PAVEL – fondatorul hidroenergeticii românești", SEBEŞ, 2013

CONSIDERAȚII PRIVIND OPORTUNITATEA UTILIZĂRII MODELULUI SHEAR PENTRU BARE DE DIFERITE LUNGIMI

Carla PROTOCSIL, Gilbert-Rainer GILLICH

CONSIDERATIONS THE USE OF SHEAR MODEL FOR BEAMS OF DIFFERENT LENGTHS

This paper presents a study of dynamic behaviour for different lenghts of beams, preserving constat section. The natural frequencies on beams, for 8 bending vibration modes after weak axis were determinated using Sh model and by FEM analysis. For any lenght of beam, the result is pretty good, acceptable errors.

Cuvinte cheie: vibrații, modul formei de vibrație, frecvențe, metoda Shear Keywords: vibrations, mode shape, frequencies, the Shear method

1. Introducere

Problema vibraţiei transversale a barelor a fost studiată folosind ecuaţiile diferenţiale de mişcare, forţele externe, condiţii la limită şi condiţii iniţiale. Cele mai complete studii au fost făcute de Traill-Nash şi Collar [1], ei derivând ecuaţia frecvenţei şi impunând condiţii la limită pentru cele patru modele.

O formulare exactă a problemelor grinzilor (barelor) a fost făcută pentru prima dată de către Pochhammer şi Chree [2]. Efectul încovoierii este cel mai important factor în vibrația transversală a grinzilor. Modelul forței tăietoare (Shear) adaugă deformarea forței tăietoare la modelul Euler-Bernoulli. Aceasta este o diferență dintre modelul forței tăietoare care include deformarea forței tăietoare, și inerția la rotire doar pentru barele simple, care includ și deplasarea laterală [3].

2. Calculul frecvenţelor proprii folosind modelul cu considerarea forţei tăietoare (Shear)

În acest caz se consideră unghiul total de rotație ca fiind suma dintre α și β :

$$\alpha(\mathbf{x},t) + \beta(\mathbf{x},t) = \frac{\partial \mathbf{v}(\mathbf{x},t)}{\partial \mathbf{x}}$$
(1)

Pentru condițiile de contur se obține ecuația de mișcare:

$$\begin{cases} \rho \cdot A \cdot \frac{\partial^2 v(x,t)}{\partial t^2} - k' \cdot G \cdot A \cdot \left(\frac{\partial^2 v(x,t)}{\partial x^2} - \frac{\partial \alpha(x,t)}{\partial x} \right) = f(x,t) \\ \frac{\partial^2 \alpha(x,t)}{\partial x^2} + k' \cdot G \cdot A \cdot \left(\frac{\partial v(x,t)}{\partial x} - \alpha(x,t) \right) = 0 \end{cases}$$
(2)

în care s-au notat: v este deplasarea, α este unghiul de rotație transversal al secțiunii, datorită momentului de încovoiere, β fiind unghiul de deformare datorită forfecării, $\partial \alpha / \partial x$ este dimensionarea momentului, k este factorul de forfecare adimensional (Shear).

Pentru o secțiune dreptunghiulară, factorul de forfecare este:

$$k' = \frac{10(1+v)}{12+11v}$$
(3)

Considerând că v(x,t) și $\alpha(x,t)$ sunt de aceeași formă dată:

$$\begin{bmatrix} v(x,t) \\ \alpha(x,t) \end{bmatrix} = T(t) \cdot \begin{bmatrix} \phi(x) \\ \psi(x) \end{bmatrix}$$
(4)

obţinem:

$$\frac{\partial^{4}\psi(x)}{\partial x^{4}} + \frac{\rho \cdot \omega^{2}}{k' \cdot G} \cdot \frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{\rho \cdot A}{E \cdot I_{z}} \cdot \omega^{2} \cdot \psi(x) = 0$$

$$\frac{\partial^{4}\psi(x)}{\partial x^{4}} + \frac{\rho \cdot \omega^{2}}{k' \cdot G} \cdot \frac{\partial^{2}\psi(x)}{\partial x^{2}} - \frac{\rho \cdot A}{E \cdot I_{z}} \cdot \omega^{2} \cdot \psi(x) = 0$$
Relatiile (5) se pot scrie:
(5)

$$\begin{cases} \phi^{m}(x) + \frac{\rho \cdot \omega^2}{k' \cdot G} \cdot \phi^{n}(x) - \rho \cdot A \cdot \omega^2 \cdot \phi(x) = 0
\end{cases}$$
(6)

$$\left(\psi^{''''}(x) + \frac{\rho \cdot \omega^2}{k' \cdot G} \cdot \psi^{''}(x) - \rho \cdot A \cdot \omega^2 \cdot \psi(x) = 0\right)$$
(7)

Ecuația caracteristică asociată, a relației (6) este:

$$r^{4} + \frac{\rho \cdot \omega^{2}}{k' \cdot G} \cdot r^{2} - \rho \cdot A \cdot \omega^{2} = 0$$
(8)

cu soluțiile:

$$r_{i} = \pm \sqrt{-\frac{\rho \cdot \omega^{2}}{2 \cdot k' \cdot G} + \rho \cdot A \cdot \omega^{2} \pm \sqrt{\left(\frac{\rho \cdot \omega^{2}}{2 \cdot k' \cdot G}\right)^{2}}$$
(9)

pentru i = 1, 2, 3, 4, Dacă notăm:

$$\begin{cases} a = \sqrt{\frac{\rho \cdot \omega^2}{2 \cdot \mathbf{k}' \cdot \mathbf{G}} + \frac{\rho \cdot \mathbf{A} \cdot \omega^2}{\mathbf{E} \cdot \mathbf{I}_z} + \sqrt{\left(\frac{\rho \cdot \omega^2}{2 \cdot \mathbf{k}' \cdot \mathbf{G}}\right)^2} \\ b = \sqrt{-\frac{\rho \cdot \omega^2}{2 \cdot \mathbf{k}' \cdot \mathbf{G}} + \frac{\rho \cdot \mathbf{A} \cdot \omega^2}{\mathbf{E} \cdot \mathbf{I}_z} + \sqrt{\left(\frac{\rho \cdot \omega^2}{2 \cdot \mathbf{k}' \cdot \mathbf{G}}\right)^2} \end{cases}$$
(10)

Ştiind că

$$\begin{cases} a^{2} = B_{1} + \sqrt{B_{1}^{2} + B_{2}} \\ b^{2} = -B_{1} + \sqrt{B_{1}^{2} + B_{2}} \end{cases}$$
(11)

Se introduce γ care este o constantă, și care este dată de relația:

$$\gamma^{2} = \frac{E}{k' \cdot G} = \frac{2(1+v)}{k'}$$
 (12)

Se ajunge astfel la relația dintre a și b:

$$b = \mathbf{a} \cdot \sqrt{\frac{1}{\gamma^2 \cdot k^2 \cdot a^2 + 1}}$$
(13)

 $(b^2 - a^2) \cdot a \cdot b \cdot sin a \cdot sinh b + (b^4 + a^4) \cdot cos a \cdot cosh b + 2a^2b^2 = 0$ (14) Se introduce b şi se obține relația în a:

$$\frac{-\gamma^{2} \cdot \mathbf{a} \cdot k^{2}}{\left(\gamma^{2} \cdot \mathbf{a}^{2} \cdot k^{2} + 1\right)^{\frac{3}{2}}} \cdot \sin \mathbf{a} \cdot \sinh \left(\mathbf{a} \cdot \sqrt{\frac{1}{\gamma^{2} \cdot \mathbf{a}^{2} \cdot k^{2} + 1}}\right) + \left[\left(\frac{1}{\gamma^{2} \cdot \mathbf{a}^{2} \cdot k^{2} + 1}\right)^{2} + 1\right] \cdot \cos \mathbf{a} \cdot \cosh \left(\mathbf{a} \cdot \sqrt{\frac{1}{\gamma^{2} \cdot \mathbf{a}^{2} \cdot k^{2} + 1}}\right) + \frac{2}{\gamma^{2} \cdot \mathbf{a}^{2} \cdot k^{2} + 1} = 0$$

$$(15)$$

În tabelul 1 sunt date valorile lui k (coeficient de forfecare):

	Tabelul
L = 200 mm	$k^2 = 300 \times 10^{-6}$
L = 1400 mm	$k^2 = 6,122 \times 10^{-6}$

ştiind că:

$$\omega_i = 2\pi \cdot f_i \tag{16}$$

frecvențele naturale sunt date de:

$$f_{i} = \frac{\sqrt{a_{i}^{2} - b_{i}^{2}}}{2\pi} \cdot \sqrt{\frac{E}{\rho \cdot L^{2}}} \cdot \sqrt{\frac{k'}{2(1+v)}}$$
(17)

3. Rezultate

Proprietățile fizice și mecanice ale grinzilor analizate sunt prezentate în tabelul 2, în timp ce secțiunea geometrică și caracteristicile geometrice sunt prezentate în tabelul 3.

Tabelul 2

Proprietăți	U.M.	Valoare
Densitatea	kg/m ³	7850
Modulul de elasticitate longitudinal	N/m ²	2,0 × 10 ¹¹
Coeficientul lui Poisson	-	0,3

Tabelul 3

Înălțimea	Lăţimea	Aria secțiunii	Momentul de inerție
Н	В	А	Iz
[m]	[m]	[m²]	[m ⁴]
0,012	0,012	1,44×10 ⁻⁴	1,728×10 ⁻⁹

Pentru grinda încastrată, având dimensiunile prezentate în lucrarea anterioară, s-au obținut valorile frecvențelor pentru primele opt moduri, pentru grinzile de lungime 200 mm (tabelul 4), respectiv 1400 mm (tabelul 5), astfel:

			Tabelul 4
Mod i	Valorile coefic	cienților a și b	Frecvenţa [Hz]
1	a ₁	b ₁	f ₁
	1,874617529707815	1,87160104260242	244,0938
2	a ₂	b ₂	f ₂
2	4,683051107289945	4,63661011328161	1510,6380
2	a ₃	b ₃	f ₃
3	7,8276447371856123	7,61637318252389	4147,7278
4	a 4	b4	f4
4	10,943664115313593	10,3875322878116	7908,7177
F	a_5	b ₅	f ₅
Э	14,055077952104785	12,9313720669694	12644,7078
e	a_6	b ₆	f ₆
6	17,162685338488064	15,2269986285728	18181,5322
7	a ₇	b ₇	f ₇
/	20,268729495564777	17,2718325895511	24355,4343
0	a ₈	b ₈	f ₈
0	23,375296219498974	19,0756828624993	31021,8825

Tabelul 5

Mod i	Valorile coefic	Frecvenţa [Hz]	
1	a ₁	b ₁	f ₁
1	1,8750941300808166	1,87503238071159	4,9917
2	a ₂	b ₂	f ₂

	4,693862936130608	4,69289456562111	31,2744	
0	a_3	b ₃	f ₃	
3	7,854183932153075	7,84904961653347	87,5326	
4	a4	b4	f4	
4	10,994409345973816	10,9819824215543	171,4239	
F	a_5	b ₅	f ₅	
5	14,135300418982421	14,1089199334461	283,1507	
6	a_6	b ₆	f ₆	
0	17,275971796076043	17,2278772624994	422,5646	
7	a ₇	b ₇	f ₇	
1	20,416463220230238	20,3372145640056	589,5096	
0	a ₈	b ₈	f ₈	
0	23,556774270199977	23,4352782071263	783,7992	

În tabelul 6 este prezentat numărul de noduri și numărul elementelor grinzilor, corespunzător elementului mediu folosit pentru discretizare de 2 mm, rezultate obținute cu programul Ansys.

Tabelul 6

Tipul grinzii				
2	00	1400		
noduri elemente		noduri	elemente	
18333	3600	127533	25200	

Rezultatele *erorilor relative* a frecvențelor proprii, cazul Euler-Bernoulli, sunt prezentate în tabelul 7, iar în figura 1 se prezintă grafic aceste erori.

S-a calculat eroarea relativă a frecvențelor proprii pentru modelul Euler-Bernoulli, astfel:

$$\Delta f_i^{Sh} = \frac{f_i^{FEM} - f_i^{Sh}}{f_i^{FEM}} \cdot 100 \quad [\%]$$
(18)

Rezultatele erorilor relative a frecvențelor proprii sunt prezentate în tabelul 7, iar în figura 1 se prezintă grafic aceste erori.

Tabelul 7

Mod	Lungime [mm]						
i	200	400	600	800	1000	1200	1400
1	0,2207	0,1286	0,0948	0,0689	0,0558	0,0669	0,0439
2	-0,1700	0,0280	0,0499	0,0436	0,0396	0,0557	0,0359
3	-0,7147	-0,1257	-0,0200	0,0039	0,0142	0,0379	0,0228
4	-1,3770	-0,3383	-0,1192	-0,0527	-0,0224	0,0124	0,0040
5	-2,0509	-0,5952	-0,2435	-0,1248	-0,0691	-0,0203	-0,0200
6	-2,6716	-0,8855	-0,3905	-0,2113	-0,1257	-0,0601	-0,0495
7	-3,1989	-1,1970	-0,5568	-0,3113	-0,1917	-0,1068	-0,0841
8	-3,6164	-1,5181	-0,7390	-0,4233	-0,2665	-0,1599	-0,1237

Fig. 1 Eroarea relativă a valorii frecvenţelor proprii, raportând frecvenţele obţinute cu modelul Share la cele determinate numeric

4. Concluzii

■ Modelul Share oferă rezultate bune pentru întregul domeniu de analiză.

■ Concluziile se bazează pe studiul raportului dintre frecvenţele calculate cu modelul Share şi frecvenţele determinate cu ajutorul metodei elementelor finite ce simulează cu mare precizie cazul real; cu cât raportul este mai aproape de unitate, cu atât frecvenţele au fost mai exact calculate.

Mulţumiri

Autorii mulţumesc pentru sprijinul acordat de Fondul Social European Programul Operaţional Sectorial Dezvoltarea Resurselor Umane (FSE POSDRU), prin Ministerul Muncii, Familiei şi Protecţiei Sociale prin cofinanţarea proiectului (DocInvest) POSDRU/107/1.5/S/76813.

BIBLIOGRAFIE

[1] Traill–Nash, R.W., Collar, A.R., *Quarterly Journal of Mechanics and Applied Mathematics*. The effects of shear flexibility and rotatory inertia on the bending vibration of beams, 1953, pag. 186-213.

[2] Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity. New York: Dover Publications, Inc., 1927.

[3] Abbas, B.A.H., Thomas, J., *Journal of sound and Vibration*. The second frequency spectrum of Timoshenko beam, 1977, pag. 123-137.

Drd.Ing. Carla PROTOCSIL, Universitatea "Eftimie Murgu" Reşiţa, membru AGIR e-mail: <u>c.protocsil@uem.ro</u>

Prof.Univ.Dr.Ing.Ec. Gilbert-Rainer GILLICH, Prorector Cercetare Universitatea "Eftimie Murgu" Reşiţa, Preşedinte AGIR sucursala Caraş-Severin e-mail: <u>gr.gillich@uem.ro</u>