

A XII-a Conferință Națională multidisciplinară – cu participare internațională "Profesorul Dorin PAVEL – fondatorul hidroenergeticii româneşti", SEBEŞ, 2012

GENERAREA ROŢILOR DINŢATE ELIPTICE PLANE ȘI DINȚI ÎNCLINAȚI CU AJUTORUL FREZEI MELC Partea a III-a

Lucian MÎNTOIU, Laurențiu MUREŞAN, Călin CUREA, Mihai SUDRIJAN

GENERATION OF PLANAR AND HELICAL ELIPTICALGEARS BY HOB (III)

The paper presents the basic elements of generation planar and helical elliptical gears by hob in vision of Profesor Litvin.

Cuvinte cheie: centroidă eliptică, freză melc Keywords: elliptical centroid, cutter worm

6. Generarea suprafeței Σ_1 a roții dințate eliptice de către un melc -continuare

(v) Transformarea de coordonate dintre sistemele, $S_{\rm w}$ și $S_{\rm 1}$, determină familia suprafețelor spirelor elicoidale ale melcului în sistemul $S_{\rm 1},$ astfel,

$$\vec{r}_{1}(h_{w}, \varepsilon_{w}, \phi_{w}, s_{w}) = M_{1w}(\phi_{w}, s_{w})\vec{R}_{w}(h_{w}, \varepsilon_{w})$$
(38)

Aici, ϕ_w și s_w , sunt parametrii independenți generalizați ai mișcării, care înseamnă că este un proces de dublă înfășurare,

Fig. 6 Sistemele de coordonate aplicate pentru generarea roții dințate eliptice de către melcul de rectificare: (a) la roata dințată eliptică; (b) la melc

iar matricea 4×4, M_{1w} , descrie transformarea din sistemul S_w în sistemul S_1 . Deducerea ecuației (38) este realizată astfel: $\vec{r}_1(h_w, \varepsilon_w, \varphi_w, s_w) = M_{1f}(\varphi_w, s_w)M_{fs}(s_w)M_{sw}(\varphi_w)\vec{R}_w(h_w, \varepsilon_w)$ (39)

unde

$$M_{\rm tf}(\phi_{\rm w},s_{\rm w}) = \begin{bmatrix} \cos\psi_1 & \sin\psi_1 & 0 & -y_{\rm f}^{(O_1)}\sin\psi_1 \\ -\sin\psi_1 & \cos\psi_1 & 0 & -y_{\rm f}^{(O_1)}\cos\psi_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(40)

$$M_{fs}(s_{w}) = \begin{bmatrix} \cos \gamma_{wg} & 0 & -\sin \gamma_{wg} & 0 \\ 0 & 1 & 0 & \rho_{w} \\ \sin \gamma_{wg} & 0 & \cos \gamma_{wg} & s_{w} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(41)

$$M_{sw}(\phi_w) = \begin{bmatrix} \cos \phi_w & -\sin \phi_w & 0 & 0\\ \sin \phi_w & \cos \phi_w & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(42)

(vi) Deoarece generarea suprafeței Σ_1 , a roții dințate eliptice, implică un proces de dublă înfășurare, există două ecuații ale angrenării

$$f_{1}^{(w1)}(\mathbf{h}_{w},\varepsilon_{w},\phi_{w},\mathbf{s}_{w}) = 0$$

$$(43)$$

$$f_2^{(w1)}(h_w, \varepsilon_w, \phi_w, s_w) = 0$$
(44)

care corelează parametrii $(h_w, \epsilon_w, \phi_w, s_w)$. Considerarea simultană a ecuațiilor (38), (43) și (44) determină suprafața Σ_1 a roții dințate eliptice.

Se va deduce funcția $g(\phi_w, s_w, \theta) = 0$. Deducerea este realizată în modul următor (vezi figura 7):

(i) Se consideră o sculă pieptene imaginară fiind simultan în angrenare cu roata dințată eliptică și cu melcul. În poziția inițială, sistemul S_c coincide cu sistemul S_f , iar linia tangentă comună t - t dintre cele trei suprafețe, Σ_w, Σ_1 și Σ_c , este în poziția t_0 .

(ii) Datorită rotației și translației melcului, cu ϕ_w și s_w , tangenta comună, t - t, va ocupa poziția t_2 . Locația sistemului S_c , în S_f , este determinată de către $x_f^{(O_c)}$.

Fig. 7 Pentru determinarea funcției $g(\phi_w, s_w, \theta) = 0$

(iii) Deplasarea sistemului S_c poate fi obţinută ca sumă a deplasărilor independente $\Delta x_{f_1}^{(O_c)}$ şi $\Delta x_{f_2}^{(O_c)}$:

$$\Delta \mathbf{x}_{f}^{(O_{c})} = \Delta \mathbf{x}_{f_{1}}^{(O_{c})} + \Delta \mathbf{x}_{f_{2}}^{(O_{c})}.$$
(45)

Deplasarea $\Delta x_{t_1}^{(O_c)} = \overline{O_f S}$ este cauzată de către translația s_w și este definită de către pozițiile t₀ și t₁.

Deplasarea $\Delta x_{t_2}^{(O_c)} = \overline{SO_c}$ este cauzată de către rotația ϕ_w și este definită de către pozițiile t_1 și t_2 .

(iv) Ilustrațiile figurii 7 (b) oferă,

$$-\Delta \mathbf{x}_{f_{1}}^{(O_{c})} = \overline{O_{f}S} = tg\beta_{c}s_{w}$$
(46)

$$-\Delta x_{f_2}^{(O_c)} = \overline{SO_c} = \frac{p_w \cos \lambda_w}{\cos \beta_c} \phi_w, \qquad (47)$$

unde p_w este pasul melcului.

(v) Deoarece $x_f^{(O_c)}$ depinde de unghiul polar θ (vezi ecuația (4)), funcția $g(\phi_w, s_w, \theta) = 0$ este obținută în final ca

$$g(\phi_{w}, s_{w}, \theta) = x_{f}^{(O_{c})}(\theta) + tg\beta_{c}s_{w} + \frac{p_{w}\cos\lambda_{w}}{\cos\beta_{c}}\phi_{w} = 0$$
(48)

7. Deducerea matricei ecuațiilor angrenării

 $\begin{array}{ccc} Deducerea & matricei & ecuațiilor & angrenării \\ f_1^{(w1)}\!\left(\!h_w,\epsilon_w,\varphi_w,s_w\right)\!=\!0\, \\ si & f_2^{(w1)}\!\left(\!h_w,\epsilon_w,\varphi_w,s_w\right)\!=\!0\,, \quad este \quad realizată \ \ \hat{n} \\ modul următor: \end{array}$

(i) Vectorul de poziție $\vec{r}_1(h_w,\epsilon_w,\phi_w,s_w)$ în coordonate omogene este dat de către

$$\vec{r}_{1}(h_{w}, \varepsilon_{w}, \phi_{w}, s_{w}) = M_{1w}(\phi_{w}, s_{w})\vec{R}(h_{w}, \varepsilon_{w}) = \\ = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \sin\psi_{1}(\rho_{w} - y_{f}^{(O_{1})}) \\ a_{21} & a_{22} & a_{23} & \cos\psi_{1}(\rho_{w} - y_{f}^{(O_{1})}) \\ a_{31} & a_{32} & a_{33} & s_{W} \\ 0 & 0 & 0 & 1 \end{bmatrix} \vec{R}_{w}(h_{w}, \varepsilon_{w}), \quad (49)$$

unde

$$a_{11} = \cos \psi_1 \cos \psi_{wg} \cos \phi_w + \sin \psi_1 \cos \phi_w$$
(50)

$$a_{12} = -\cos\psi_1 \cos\gamma_{wg} \sin\phi_w + \sin\psi_1 \cos\phi_w$$
(51)

$$\mathbf{a}_{13} = -\cos \psi_1 \sin \gamma_{wg} \tag{52}$$

$$a_{21} = -\sin\psi_1 \cos\gamma_{wg} \cos\phi_w + \cos\psi_1 \sin\phi_w$$
(53)

$$a_{22} = \sin \psi_1 \cos \gamma_{wg} \sin \phi_w + \cos \psi_1 \cos \phi_w$$
(54)

$$a_{23} = \sin \psi_1 \sin \gamma_{wg} \tag{55}$$

$$a_{31} = \sin \gamma_{wg} \cos \phi_w \tag{56}$$

$$a_{32} = -\sin\gamma_{wg}\sin\phi_{w} \tag{57}$$

$$\mathbf{a}_{33} = \cos \gamma_{wg} \tag{58}$$

(ii) Vectorul de poziție $\vec{r}_1(h_w, \epsilon_w, \phi_w, s_w)$ este notat $\vec{\rho}_1(h_{w_1}, \epsilon_{w_1}, \phi_{w_1}, s_{w_1})$, în coordonate carteziene și poate fi reprezentat astfel,

$$\vec{\rho}_{1}(\mathbf{h}_{w},\varepsilon_{w},\phi_{w},\mathbf{s}_{w}) = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix} \vec{\rho}_{w}(\mathbf{h}_{w},\mathbf{r}_{w}) + \begin{bmatrix} \sin\psi_{1}(\rho_{w} - y_{f}^{(O_{1})}) \\ \cos\psi_{1}(\rho_{w} - y_{f}^{(O_{1})}) \\ \mathbf{s}_{w} \end{bmatrix} = L_{1w}(\phi_{w},\mathbf{s}_{w})\rho_{w}(\mathbf{h}_{w},\varepsilon_{w}) + \vec{R}$$
(59)

Aici, L_{1w} este matricea 3 × 3, obținută prin eliminarea ultimului rând și a ultimei coloane a matricei 4 × 4, M_{1W} . Matricea L_{1w} poate fi obținută de asemenea ca

$$\mathsf{L}_{1\mathsf{w}} = \mathsf{L}_{1\mathsf{f}}\mathsf{L}_{\mathsf{f}\mathsf{s}}\mathsf{L}_{\mathsf{s}\mathsf{w}},\tag{60}$$

pe câtă vreme, R este definit astfel,

$$\mathbf{R} = \left[\sin\psi_1\left(\rho_w - \mathbf{y}_f^{(O_1)}\right) \quad \cos\psi_1\left(\rho_w - \mathbf{y}_f^{(O_1)}\right) \quad \mathbf{s}_w\right]^{\mathsf{T}}$$
(61)

(iii) Considerând s_w constant $(s_w = c)$, viteza relativă a suprafeței elicoidale în raport cu suprafața dintelui roții poate fi obținută astfel,

$$\vec{v}_{1,s_w=c}^{(w1)} = \dot{\vec{\rho}} = \dot{L}\rho_w + \dot{\vec{R}}$$
 (62)

unde

$$\dot{L}_{1w} = \dot{L}_{1f} L_{fs} L_{sw} + L_{1f} L_{fs} \dot{L}_{sw}$$
(63)

$$\dot{L}_{1f} = \begin{vmatrix} -\sin\psi_1 & \cos\psi_1 & 0 \\ -\cos\psi_1 & -\sin\psi_1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \dot{\psi}_1$$
(64)

$$\dot{L}_{sw} = \begin{bmatrix} -\sin\phi_{w} & -\cos\phi_{w} & 0\\ \cos\phi_{w} & -\sin\phi_{w} & 0\\ 0 & 0 & 0 \end{bmatrix} \dot{\phi}_{w}, \ \dot{\phi}_{w} = -\frac{\cos\beta_{c}}{p_{w}\cos\lambda_{w}} \dot{X}_{f}^{(O_{c})}$$
(65)

$$\dot{\vec{R}} = \begin{bmatrix} \cos\psi_1 (\rho_w - y_f^{(O_1)}) \dot{\psi}_1 - \sin\psi_1 \dot{y}_f^{(O_1)} \\ -\sin\psi_1 (\rho_w - y_f^{(O_1)}) \dot{\psi}_1 - \cos\psi_1 \dot{y}_f^{(O_1)} \end{bmatrix}$$
(66)

atunci ecuația angrenării poate fi obținută astfel:

$$f_1^{(w1)} = \vec{n}_1 \cdot \vec{v}_{1,s_w=c}^{(w1)} = 0 \tag{67}$$

unde

$$\vec{n}_1 = L_{1w}\vec{n}_w \tag{68}$$

Aici, \vec{n}_w este versorul normalei la suprafața elicoidală.

$$\vec{v}_{1,\phi_{W}=c}^{(m1)} = \dot{\vec{\rho}}_{1} = \dot{L}_{1W} \rho_{W} + \dot{\vec{R}}$$
(69)

unde

$$\dot{\mathsf{L}}_{1\mathsf{W}} = \dot{\mathsf{L}}_{1\mathsf{f}} \, \mathsf{L}_{\mathsf{fs}} \mathsf{L}_{\mathsf{S}_{\mathsf{W}}} \tag{70}$$

$$\dot{L}_{1f} = \begin{bmatrix} -\sin\psi_{1} & \cos\psi_{1} & 0\\ -\cos\psi_{1} & -\sin\psi_{1} & 0\\ 0 & 0 & 0 \end{bmatrix} \dot{\psi}_{1}$$
(71)

$$\dot{\vec{R}} = \begin{bmatrix} \cos\psi_{1} (\rho_{W} - y_{f}^{(O_{1})}) \dot{\psi}_{1} - \sin\psi_{1} \dot{y}_{f}^{(O_{1})} \\ -\sin\psi_{1} (\rho_{W} - y_{f}^{(O_{1})}) \dot{\psi}_{1} - \cos\psi_{1} \dot{y}_{f}^{(O_{1})} \\ \dot{s}_{w} \end{bmatrix}$$
(72)

$$\dot{s}_{w} = \frac{1}{tg\beta_{c}} \dot{x}_{f}^{(O_{2})}$$
(73)

Atunci ecuația angrenării poate fi obținută astfel,

$$f_{2}^{(w1)} = \vec{n} \cdot \vec{v}_{1,\phi_{W}=c}^{(w1)} = 0$$
(0,)
(74)

(v) Deducerea derivatelor \dot{y}_{f} , \dot{x}_{f} şi $\dot{\psi}_{1}$, sunt:

$$\dot{y}_{f}^{(O_{1})} = \frac{dy_{f}^{(O_{1})}}{d\theta} \cdot \frac{d\theta}{dt}$$
(75)

$$\dot{\mathbf{x}}_{f}^{(O_{c})} = \frac{d\mathbf{x}_{f}^{(O_{c})}}{d\theta} \cdot \frac{d\theta}{dt}$$
(76)

$$\dot{\psi}_{1} = \frac{d\psi_{1}}{d\theta} \cdot \frac{d\theta}{dt}$$
(77)

unde $\frac{dx_{f}^{(O_{c})}}{d\theta}, \frac{dy_{f}^{(O_{1})}}{d\theta}$ și $\frac{d\psi_{1}}{d\theta}$ sunt date de către ecuațiile (11), (12) și, respectiv, (13).

BIBLIOGRAFIE

[1] Litvin, F.L., Fuentes-Aznar, A., Gonzales-Perez, I., *Kenichi Hayasca: Noncircular Gears. Design and Generation.* 2010 Cambridge University Press.

Drd.Ing. Lucian MÎNTOIU Director de Producție la S.C. Nova-Grup srl Cugir membru AGIR

Ing. Laurențiu MUREŞAN Administrator Special la S.C. Fabrica de Arme Cugir S.A. membru AGIR

Col. Dr.Ing. Călin CUREA Şef Recepție S.C. Militară la Fabrica de Arme Cugir S.A. membru AGIR

Dr.Ing. Mhai SUDRIJAN Inginer de angrenaje la S.C. Sculăria srl Cugir Preşedinte Sucursala Alba a AGIR