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ABOUT A GRAPHICAL METHOD OF OPTIM CONTOUR 
DETERMINATION FOR THE SPHERE-CYLINDER  

SHELL UNDER INTERNAL PRESSURE  
 

 The study of the analytical method for determination an optim contour 
for the vessels sphere-cylinder under internal pressure [1] with the achievement 
a uniform state of the stress, regarding the stress state from vessel, it 
considered the analytic equations for the stress state in the shell.  

Present study propose to solve the same problem but used the 
graphics of equivalents Von Mises stress used the approximation method of the 
graphics through the spline functions. 

 
Studiul metodei analitice de determinare a unui contur optim pentru 

invelitoarea cilindru-sferă sub presiune internă [1] cu scopul obținerii unei stări 
de tensiuni  uniforme, privitor la starea de tensiuni din recipient, consideră 
ecuațiile analitice pentru starea de tensiuni în învelitoare.  

Prezentul studiu propune rezolvarea problemei utilizând graficele 
tensiunilor echivalente von Mises utilizând metoda de aproximare a graficelor 
prin funcții spline. 
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1. İntroduction 
 

 The analytical method for the optimization of the exterior 
contour of a sphere-cylinder vessel under internal uniform axial 

symmetrical pressure, presented in the paper 1, used for the start the 
analytical equations what defined the stress state in the shell. Because 
of many times not know the analytical equations of the stress state , so 
the stress state in the thick shell for the sphere-cylinder vessel, in this 
study propose the optimization the contour shell, start from the graphics 
of equivalents Von Mises stress acquired through the FEM method, 
results after the run of element finites programme NASTRAN V4.0 [3]. 

 
The input values are the equivalent von Mises stress functions 

yi,i=1…n for the n equidistant points xi,i=1…n on the shell, for the various 
thickness of the shell gk,k=1…m. 
 
  Fk(xi,gk)=yi ,       i = 1..n , k=1..m                    (1)
  
 
Because to impose the knowledge in the final of the thickness values of 
the shell ti,i=1…n  in n points of the shell for a value Yu of the equivalents 
von Mises stress, it impose to determine the function: 
 
  ti = T(Yu,xi)       ,     i = 1..n        (2) 
 

2. Theoretical Considerations 
 

The functions family yi,i=1…n (1) express the dependence 
between the equivalents von Mises stresses and the points of the shell 
xi,i=1…n , determined for a finite value of the thickness parameters of the 
shel gk,k=1…m and because is necessary know the thickness of the shell 
ti,i=1…n in n points from shell in the condition keeping a constant value Yu 
for equivalents von Mises stress in all n points from shell, it necessary 
the application an interpolation method and in this study selected the 
interpolation through spline functions which benefit of the remarkable 

propriety of minimum curvature 2. 
 
The function of expressing of the shell thickness for which to 

determine ti,i=1…n = G(Yn, xi) in n points are defined on the interval a,b 
and be ∆ an interval of division : 
   a = x1 < x2 <… xn = b                     (3) 



For the determination of function G: a,b→R it necessary to know the 
functions family values fkv= Gi,i=1…n (yk,xi) defined in m points k=1…m, 
for n points i=1…n started from the functions family Fk, k=1…m   (1). 

 
The function Gi being a tabbing function for it determination in n 

points for a value of equivalents von Mises stress Yu establishes to be 
constant in n points of the shell, to build a spline function for the 
function Gi in the end the determination the function ti (2). 

 
The function spline [2] of order n relative at the dimension ∆ of 

the interval a,b is a function S:a,b→R of class C
n-1
a,b, with the 

restriction Si(y) on each subinterval yk,yk+1 of the division, are the 
polinome of the order j, so: 
 

  Si(y)=Pj
(i)

 (y)   if  yϵyk,yk+1 ,  k=1…m-1                (4) 
 

The spline function S(y) has the first derivate (j-1) continuous 

on the interval a,b , the derivate of j order discontinuous in the node yk 
of the division, so he is a smooth function on the part, the smooth grade 
of the spline function is gived of the order j. 

 
Definition  It name the spline function [2] of interpolation for the 

function Gi , spline function S(y) on the give division which accomplish 
the interpolation conditions: 
 
   S(yk)=gk  , k=1…m        (5) 

 

It considers the cubic spline functions of interpolation and in this case 
the restriction Sk(y) are the polynomial of the third order: 
 

 Sk(y)=Aky
3
+Bky

2
+Cky+Dk if yϵyk,yk+1 ,  k=1…m-1       (6) 

 

The cubic spline functions are of C
2
a,b class, so are continuous 

together with first two derivate. The coefficients Ak,Bk,Ck,Dk of the each 
restriction can be determinates from conditions of continous in the 
points of the division. 
The second derivate of the function Sk(y) is a linear function and so: 
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are the values of the second derivate of the spline function in the nodes 
of the interpolation network, the relation (7) may be set under form: 
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with        
    
  hk=yk+1-yk  ,   k=1…m-1 

 

 
Integrating of twice , the relation (8) became successive: 
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and the results: 
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Replacing these expressions in the relation (10) and identifying the 
coefficients of the y powers, results for the coefficients of restrictions (6) 
following: 
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For the complete defining of the spline functions must determined its 
derivate of two ordin Dk

*
 in the points of division. In this purpose it 

imposed the continuity of the first derivate of the spline function in this 
points: 
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Used the expression (9) for the first derivate and consider expression 
(13) for the constants of integration, the expression (16) is; 
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This is a system of (m-2) equations having the unknowns the m 
derivate of two order Dk

*
 of the spline functions in the interpolation 

nodes.  
 

From the condition of the interval heads y1,ym , it can obtain two 
supplementary relations. Suppose [2] that are know the derivate g1

/
 and 

gm
/
 in these points, so: 
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with these relations it obtain the following linear equation system with 
the three diagonal matrice for the determination the derivate of two 
ordin for the spline functions: 
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where 
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aj = hj-1   bj = 2(hj-1+hj) c j= hj j = 2,…m-1 
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The linear equation system (22) it can resolve [2] used a solving 
method for the equations system with the three diagonal matrices. After 
obtain the values Dj

*
 it can compute the coefficients Aj, Bj, Cj, Dj of the 

restrictions with the relations (15), the spline functions being defined. 
 
 3. Conclusions 
 

To know the spline function S(yk) = gk,k=1…m  for the tabling 
function Gi mean kcnowledge  of the dependence between thickness 
and equivalente von Mises stress for the point xi of the shell in interval 
determinated of the m points.  

 
The value of the shell thickness gi in the point i of the vessel for 

a imposed value of echivalente Von Mises stress y = Yn it can 
determined intersecting the spline function S(yk) = gk,k=1…m    with the 
equivalente von Mises stress y = Yu imposed to realize in the shell. 

 
In this way it can determine for all the points i = 1…n , the value 

of the shell thickness ti   and so the function ti = T(Yu, xi)i=1…n what 
asked. 



 
REFERENCES 

 
[1] Dora Aglaia Tatiana Florea , Method of optimization in elastic linear field of 
the thin shell for the  sphere-cylinder GRP under the pressure, Buletinul stiintific 
al UPT, Seria Mecanica,Tom 52(66), Fasc 5,2007,pag. 43-46. 

2 Bakhlalov N., Methodes numeriques, Edition Mir, 1986. 

[3] NASTRAN V.4.0.    
 
 
 

Dr.Ing. Dora FLOREA 
Departamentul de Mecanică şi Rezistenţa materialelor, 

Facultatea de Mecanică 
Universitatea ”Politehnică” Timişoara 

membru AGIR, 
e-mail:  Florea_Aglaia@yahoo.com 


